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ABSTRACT

A thermodynamic foundation using the concept of internal state variables is given for a

general theory of viscoplasticity, as it applies to initially isotropic materials. Three funda-

mental internal state variables are admitted; they are: a tensor-valued back stress for

kinematic effects, and the scalar-valued drag and yield strengths for isotropic effects. All

three are considered to phenomenologically evolve according to competitive processes

between strain hardening, strain-induced dynamic recovery, and time-induced static recovery.

Within this phenomenological framework, a thermodynamically admissible set of evolution

equations is put forth. This theory allows each of the three fundamental internal variables to

be composed as a sum of independently evolving constituents.

1. INTRODUCTION

The theoretical development of viscoplasticity has its origin with the works of BINGtlAM & GREEN [1],

HOIIENEMSER & PRAGER [2], OLDROYD [3], ODQVlST [4], STOWELL [5], and PRAGER [6], whose models do not

contain evolving internal state variables. The field started to gain inertia in the mid i960's when internal state

variable models began to appear in the theories of PERZYNA [7] and ARMSTRONG & FREDEPdCK [8]. With the

advent of the computer, rapid advances were made in the 1970's with the modeling efforts of BODNER & PARTOM

[9], HART [10], MILLER [11], PONTER & LECKIE [12], CrtABOCHE [13], KRIEG et al. [14], and ROBINSON [15].

Theoretical refinements have continued to occur throughout the 1980's in the models of CHABOCHE et al. [16],

STOUFFER _ BODNER [17], MARQUIS [18], VALANIS [19], WALKER [20], SCHMIDT ,_ MILLER [21], CHABOCHE &

ROUSSELIER [22], _SENBERG & YEN [23], BROWNING et al. [24], ESIRIN & MECKING [25], KREMr'L et al. [26],

I.OWE & MILLER [27], ANAND & BROWN [28], HENSHALL et al. [29], MCDOWELL & MOOSBRUGGER [30], NOUAILItAS

[31 ], and FREED & WALKER [32]. Reviews on various aspects of viscoplasticity have been written by PERZYNA

_- Prepared for submission to the ASME Journal of Applied Mechanics.



[33], WALKER [20], CItAN et al. [34], LEMAITRE & CHABOCHE [35], SWEARENGEN & tIOLBROOK [361, ):.rrTs &

JOI.I.ES [37], MILLER [38], and CIIABOCItE [39]. Although this listing is by no means complete, it docs provide

the reader with a representitive bibliography of the work done in the field of viscoplasticity for initially isotropic

materials.

This paper presents the development of a general, nonisothermal, viscoplastic theory from physical and

thermodynamical considerations. The basic constitutive equations, evolution equations, and dissipation inequali-

ties are derived for a class of materials whose virgin state is stress free and isotropic. Specific functional forms

for the evolution equations are then proposed as they apply to a theory of viscoplasticity. Special attention is

given to the intrinsic dissipation inequality. Here three fundamental internal state variables are considercd. One

accounts for kinematic or flow-induced anisotropic effects (i.e., the tensor-valued back stress), while the other

two account for isotropic effects (i.e., the scalar-valued drag and yield strengths). Each is considered to evolve

according to competitive phenomenological processes between strain hardening, strain-induced dynamic

recovery, and time-induced thermal recovery, in accordance with current philosophies in the field (cf. review

articles listed above). Of particular interest is the fact that each of the three basic internal variables can be com-

posed as a sum of separately evolving constitutents, which are the primary internal variables. Aspects of this

feature have been used by CHA13OCIIE et al. [16,22,35,39], MILLER et al. [21,27,29,38], and others in their visco-

plastic models.

We shall consider the thermo-mechanical behavior of viscoplastic materials; in particular, polycrystalline

metals and their alloys. Each element of the material is assumed to be isotropic and to carry no stress in its ini-

tial virgin state. As the material deforms, however, anisotropies may become induced. Only kinematic anisotropy

is considered in this paper. Small material displacements and rotations shall be considered to make up the defor-

mation of the material. In a Cartesian reference configuration, the strain e 0 is taken to be composed of elastic

e,_ (reversible - includes thermal strain) and inelastic or plastic e_ (irreversible) parts such that

ei./ = £i_ + e_ (l)

and there is no inelastic strain in the stress-free virgin state.

2. TIIERMODYNAMICS

The changing internal structures of a material element are characterized by its state {ei'),a_,T,Vi 1"}. The

elastic strain e_ iS a measure for elastic changes in the internal Structure. Tq_e internal state variables

a_ (_=1,2 ..... n) are measures for inelastic changes in the internal structure. The temperature T is a meas-

ure for the heat in a material element. And the thermal gradient V i T is a measure for heat fluxing from the

element. An inelastic material response brought about by a change in the internal variables a t affects the

future response of the material. If the a t are taken to be scalar valued, then nonintersecting subsets of the a_

may be taken to be components of higher-order, irreducible, even-rank tensors associated with a referencc

configuration [40].



Foranyquasistaticadiabaticprocess(whichisalsoa thermostatic or reversible process), Gibbs equation is

given by

= l(du - aijdeo) (2)dS

where S is the entropy, u is the internal energy, oij is the applied stress, and the set {S,elj} defines the

state. Entropy and temperature both exist in thermostatics, because dS is an exact differential and T > 0 is

its associated integrating factor [41]. It is from this relationship that one derives the theory of thermoclasticity.

Here repeated Latin indicies are summed from 1 to 3 in the usual manner.

For any thermodynamic process, be it reversible or irreversible, the Gibbs equation of thermostatics gen-

eralizes to the inequality

1 . 1 V
>-- "_(U --(_ij_ij "t- "_qi i T) (3)

x

where qi is the heat flux, and the set {S,eij,ViT} defines the state. This relationship follows from the conser-

vation of energy and the Clausius-Duhem inequality [42]. Here the existence of both entropy and temperature

must be assumed to continue into the domain of irreversible processes, as rigorous justification for their

existence continues to elude theoretical proof [43]. It is from this relationship that we derive our theory of

viscoplasticity.

Thermostatics (equation (2)) addresses reversible processes where material response depends only on the

initial and final states. Thermodynamics (equation (3)), on the other hand, addresses irreversible processes

where material response not only depends on the initial and final states, but it also depends on the path traversed

in state space.

Introducing the thermodynamic potential known as the Helmholtz free energy

= u - ST (4)

into equation (3), and using the decomposition of strain given in equation (1), one obtains the inequality

aiie_ > (g + $7" - ¢ri)_ + TqiVir (5)

From our experience with thermostatics, this relationship suggests that the set {e_,e_,T,V i T } should be the set

of independent state variables. However, experimental evidence dictates that e,_ is not an admissible indepen-

dent state variable (cf. ONAT & FARDSHISItEH [44]). Rather, one ought to introduce a set of internal state vari-

ables a_ (9=1,2 ..... n) such that the set

[45]. Therefore, considering the potential

{e.i_),a_,T,Vi T } is taken as the set of independent state variables

= _(e_ ,a_,T,V i T) (6)

equation (5) becomes

_T igViT _t + _ d_ + -_qi iT (7)
g=l
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governing any thermodynamic process. They are [45]:

av ,
tYiJ = 3ei_ _a[

the dissipation inequality 1

But because this inequality must be valid for arbitrary changes in the observable variables ei_, T, and/)V i T/Ot,

as the contributions from their associated terms are reversible, one obtains the following system of equations

the constitutive equations

(8)
3T ' _ViT

and the evolution equations

oije_ - _r4tfi_ - lqiViT > 0 (9)
1

t=l

_ = _(e_a,a_t,T,VkT) , ti t = dt(£_,ar, T,VkT) , qi = qi(e:a,av, T,Vk T) (10)

where A t (_=1,2 ..... n) are the thermodynamic forces or affinities conjugate to the thermodynamic displace-

ments a t or fluxes a_. Notice that the Helmholtz free energy is independent of the thermal gradient [42,45].

Our past observations of material response allow us to consider qi as being independent of ci_, a_ and

T, explicitly, and to also consider both _,_ and fit as being independent of Vi T, explicitly. Hence, the total

dissipation inequality given in equation (9) can be separated into the intrinsic dissipation inequality given by

_t

_ij_,_ - Y'.A_at ->0 01)
t=l

and the thermal dissipation inequality given by

TqiViT <0

Usually, the evolution of heat flux is represented by Fourier's equation

qi = -kijV: T

where the symmetric tensor for thermal conductivity kij

dissipation inequality.

(12)

(13)

must be positive definite in order to satisfy the thermal

3. CONSTITUTIVE EQUATIONS

The constitutive equations derived from thermodynamic considerations in the previous section are very

general. However, by choosing a particular form for the thermodynamic potential W based upon our past

experiences, these general relationships become specific and useful.

1 Some authors (eg., COLEMAN & GURTL-N [42]) would divide this inequality by temperature and set it equal to a

non-negative term they call the rate of entropy production, but this is an tmneeessary definition in our development.



Most existing viscoplastic models (without damage) belong to the class of materials characterized by the

thermodynamic potential

such that

V = V(ei_,a_, T) = _ (ei_, T) + Wp (a_;T) (14)

= _eOt2que. u - ei)Dijkzo_ktAT - C e T In + COAT

1
Wr = "_- _ a_ H_v a v _>0 (15)

where To is the initial value of temperature with AT = T-To, C t = T _S (ei_,T)/_T is the heat capacity at

constant elastic strain, otq are the thermal expansion coefficients, Dqkt are the elastic moduli, and tl_. t is the

symmetric matrix of hardening coefficients (which is taken to be positive definite). These material constants

typically vary with temperature to some degree. It is in this sense that the plastic potential _ depends on

temperature. This is an implicit dependence rather than an explicit one, however, as we imply by the notation

(;T). The fact that the plastic potential _ is taken as a positive-definite quadradic form is a stronger require-

ment than is actually necessary, since only the property of convexity is required of this potential.

By substituting the thermodynamic potentials of equation (14) into the constitutive equations (8), and

using the decomposition of strain given in equation (1), one obtains the following system of equations which

govern any process for the class of viscoplastic materials considered. They are: the constitutive equations

g(i = Di_tfr/a + aij AT + e_

A{ = _., H_. t a_,

the dissipation inequalities

Gq_e - _.,A _i_ > 0 1
_--1 , -_qiViT <0 (17)

and the evolution equations

_ = _(_kt,A,:,T) , tJ_ = a_(cu,A.t,T) , qi = -kqVjT (18)

where C ° = T OS(tJij ,T)/OT, and therefore C ° = C _ + oqjDijktotu in the limit as AT--) 0, which denotes the

heat capacity at constant stress or pressure. Here it is assumed that S = 0 when AT = 6,.j = 0. These govern-

ing equations reduce to those of thermoelasticity [46] in the absence of inelastic deformation. The thermo-

dynamic forces replace the thermodynamic displacements as the arguments of the evolution equations without

loss in generality because the constitutive equations for internal state are linear. This fundamental set of
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equationsformsthebasisuponwhichwedevelopourviscoplastictheoryin thenextsection.

Sincethispaperis directedtowardsmaterialsthatareisotropici0 theirinitial virginstate,onerequires
that

l+v 8 -
Di-]kll = T ik_fl V'-_)i)_)IaE O_ii = _)0 ' kil = k_)iY

A t = H_v a v --) A = ha for all scalar state variables a v _ a (19)

't+6

A t = _ Hg_, a. t --) Ai) = HSik_)jtau =Hai) for all tensor state variables a v --_ a o = aji ,aii = 0

Furthermore, isotropy also requires that the inelastic strain, and all internal state variables that are associated

with second-rank tcnsors, to be zero-valued in the initial virgin state, i.e.,

e,p)(t--O) = 0 , aij (t--0) = 0 (20)

Although internal state variables associated with fourth and higher even-rank tensors are admissible, they are not

required in this work. Here E is the elastic modulus, v is the Poisson ratio, c_ is the coefficient of thermal

expansion, and k is the thermal conductivity, all of which vary with temperature, typically. The hardening

coefficients for the intemal variables h and H may vary with temperature, too. The Kronecker delta 5,, is

defined as 1 whenever i=j, otherwise it is 0 valued. Since all internal state variables that are second-rank

tensors must be irreducible [40], they must either be symmetric and traceless (i.e., deviatoric) or antisymmetric,

but only deviatoric tensors shall be considered here.

4. VISCOPLASTIC THEORY

In the preceeding section, structure was given to the constitutive equations. In this section, structure is

given to the evolution equations resulting in a general theory of viscoplasticity. Once again we use our past

experiences to guide us, this time for the purpose of proposing functional forms for the evolution equations.

One does not have complete freedom, however, in choosing these forms. They must, by necessity, satisfy the

thcrmodynamic constraint of intrinsic dissipation (see equation (t 1)); just as Fourier's equation (13) must satisfy

the thermodynamic constraint of thermal dissipation (which constrains the thermal conductivity kij to bc posi-

tire definite).

The total dissipation inequality of equation (9) has the form

]_X_ Y_>_0
_=1

where the Xg represent the thermodynamic affinities {cij,-Ar,-VTi/T}

thermodynamic fluxes {_,_,tiv, q/} characterized through the evolution equations (18).

linear evolution equations Of ONSAGER [47]

I)_ = ]_ L_,t X_

6

(21)

and the Y_, represent their associated

As the simplest case, the

(22)



applyto someneighborhood - be it large or small - of every equilibrium state, and as such, the total dissipation

of the material element is a minimum in that neighborhood [48]. Here the symmetric matrix of coefficients L_v

must be positive definite in order to satisfy the thermodynamic dissipation inequality given in equation (21).

Fourier's evolution equation (13) for heat flux satisfies such a linear relationship; however, a linear relationship

for the evolution of inelastic strain only exits for Coble and Nabarro-Herring creep in metallic materials (cf.

ASHBY [49]). Neither of these creep mechanisms are of interest to viscoplasticians, because the stress levels

associated with Coble and Nabarro-Herring creep are too small for the viscoplasticians' intended applications.

For those applications of interest to the viscoplastic modeler, the inelastic strain rate is a highly nonlinear func-

tion of stress. Hence, the thermodynamics of Onsager does not apply to viscoplasticity. We are therefore left to

consider a more phenomenological approach.

BRIDGMAN'S [50] experimental results demonstrate that the evolution of inelastic strain in metals is, to a

good approximation, insensitive to moderate levels of hydrostatic pressure. Consequently, the evolution equa-

tions (18) for inelastic strain and the internal state variables take on the more restricted form

k e = k_(Skt ,A_,T) , _ = a_(Skt,A_,T) (23)

where Sij = crii - (_r_/3)Sij is the deviatoric stress (not to be confused with the entropy S).

The stress dependence of inelastic flow is strongly influenced by the material's anisotropy, which may be

either inherent, or flow-induced, or both. In this paper only flow-induced anisotropy is considered, and it is

introduced after the manner of r'RAGER [51]. This is done through an internal variable B 0 called the back or

internal stress, which is a symmetric and tmceless tensor (i.e., deviatoric), and therefore irreducible in accor-

dance with the theoretical results from group theory of GEARY & ONAT [40]. To assure an initial condition that

is isotropic, Bo(t=O ) = O.

yon MISKS [52] inla'oduced the concept of a plastic potential F in the flow equation for inelastic strain,

which we write as

_,_ = IgPt_ (24)

where 8F/O_ O defines the direction (in unit length) of inelastic straining, with I&l providing its magnitude.

The existence of this potential followed naturally from von MISES' [53] prior definition of yield, which is

equivalent to introducing a second-invariant (or quadradic) norm that we write as

I_el = _ _eke D'I = _/3/2 JoJq (25)q q ,

where the tensor Jo _ {S/j,B O _¢q-B 0 }. More recently, RICE [54] demonstrated the physical existence of such a

potential function based upon the mechanics and thermodynamics of dislocation slip. Most viscoplastic models

take F=IS-BI such that equation (24) becomes

e,_ = 31& I S0-B0 (26)
IS-BI



whichiscompatiblewiththekinematicconstructsproposedbyPRAGER[51]in his plasticity model. The choice

of this plastic potential provides a reasonable approximation to the actual shapes of observed yield and flow sur-

faces [55]. The norms given in equation (25) are scaled for tension. They could havc just as easily been scaled

for sheaf by replacing the coefficients that appear under the radical signs with a 1/2 for SO ,B 0 , and So-B 0 ,

anda 2 for t,_.

ZENT.R & HOLLOMON's [56] experimental results demonstrate that the functional dependence for the magni-

tude of inelastic strain rate [_:P[ can, to a good approximation, be decomposed into the product of functions

I__'(SO ,A 13,r) I = 0(T) Z(Sij ,A 13;T) > 0 (27)

where 0 > 0 is the thermal diffusivity, and Z > 0 shall be called the Zener parameter. The thermal diffusivity

is often represented as an Arrhenius function of temperature, which is valid over a significant but specified tem-

perature range (cf. MILLER [ll]). The functional dependence of the Zener parameter is of particular interest to us

in this paper. This parameter is a temperature normalized function for the magnitude of inelastic strain rate that,

at most, has only an implicit temperature dependence.

In addition to the kinematic variable, or back stress Bij, there are two isotropic variables introduced into

the general structure of our theory; they are the yield strength Y >_0 and the drag strength D > 0 (not to bc

confused with the elastic moduli Dij,t). These three internal variables interact with the deviatoric stress S,j in

such a way that the Zener parameter of equation (27) is considered to have the following functional dependence

in accordance with existing viscoplastic models. Here _v = IS-BI-Y is the viscous s_ess governing the ine-

lastic material response, with Z(0) = 0. The Macauley bracket <av> has either a value of 0 whenever

IS-BI -< Y (defining the elastic or reversible domain) or a value of _v whenever IS-BI -> Y (defining the ine-

lastic or irreversible domain), with IS-BI -- Y establishing the yield surface. Viscoplasficity (a rate dependent

theory) admits states within the yield surface, on the yield surface, and outside the yield surface. Plasticity (a

rate independent theory), on the other hand, only admits states within and on the yield surface; it does not admit

states oukside the yield surface. The expression for the Zener parameter given above is very general, and

includes three important special cases: 0 viscoplastic theories without a yield surface (i.e., Y= 0) as used by

MILI.ER [11], WALKER [20], KREMP1. et al. [26], and others; it3 viscoplastic theories with no evolving drag

strength (i.e., D= constant) as used by CHABOCttE [13], MARQUIS [18], and others; and fit) viscoplastic theories

where the yield and drag strengths are proportional (i.e., Y_D) as used by FERZYNA [7], ROBINSON" [15], and

NOUAILHAS [31].

Phenomenologically, each inlcrnal variable A e {Bi/,D ,Y } is taken to competitively evolve through a pro-

cess of the type (eft CHAnOCHE [13,39], WALKER [20], and MILt.ER et al. [27,38])

_t = hardening - dynamic recovery - static recovery (29)



wherethehardeningtermaccountsfor strengtheningmechanisms,andtherecoverytermsaccountforsoftening

mechanisms.Thehardeninganddynamicrecoverytermsboth.evolvewithinelasticity;theyarestraininduced.

Thestaticrecoverytermevolvesthermally;it is timeinduced.Whatfunctionalformeachparticulartermtakes

onvarieswiththetypeof internalvariable,asshownbelow.

At this time we list the basic structure for a thermodynamically admissible theory of viscoplasticity. A

detailed discussion of the evolution equations follows in the next section. Our general theory of viscoplasticity

for initially isotropic materials is characterized by the constitutive equations

Sij = 2t.t(e 0 - 8,_) , (3"//= 3K(8// - tx AT 8/i)

2 u

;=i ;=1

Y - Yo= _ Y,= _ h,'y,

_ = O Z n0 = l&l nij

• _1 lel d,}- oR_b,}

y_= 1- I&l- 0 r_

by the evolution equations

with directions (unit or projection) defined as

3 Sij-Bij

nii - 2 IS-B I
3 B,_, n,t- 3 S,j-B,_,

, bit- 2 IB_I ' 2 IS-B_I

(31)

di_= (l-p_)b,t +p_--_ nit (32)

and therefore, by the intrinsic dissipation inequality



+ c_ D_ + + Yv + I_Pl > 0 (33)

Here _t=E/2(l+v) is the elastic shear modulus; K =E/3(1-2v) is the elastic hulk modulus;

eij= eij - (Eu/3)Sij is the deviatoric strain; _0, _ and _, are the thermodynamic fluxes conjugate to the ther-

modynamic forces Bij, D-Do, and Y-Yo; and H, h, and h' are their associated hardening coefficients. The

material constants of the theory are: Do > 0 is the initial value of drag strength, Yo -> 0 is the initial value of

yield strength, p_E [0,1] is a nonproportionality parameter associated with the _ constituent of back stress,

and c e (0,1] is a pararaeter that can be arbitrarily set to ensure satisfaction of the intrinsic dissipation inequal-

ity, equation (33). In the virgin or annealled state, B0 = 0, D = Do, and Y = Y0; therefore, Bi_ = 0, D_ = 0,

and Y_= 0 in this state, The material functions of the theory are: 0 > 0 is the thermal difusivity;

Z = I_p I/0 -> 0 is the Zener parameter; L > 0, I > 0, and 1' > 0 are the limiting states for the internal vari-

ables, as associated with dynamic recovery; and R > 0, r > 0, and r'> 0 arc the static recovery functions.

The limit and static-recovery functions are, in general, functions of state as established by the set

{SO ,B,j ,D ,Y,T}, while the functional dependences of thermal diffusivity and Zener's parameter are specified in

equations (27 and 28). These constitutive, evolution, and dissipation equations are a special case of the thermo-

dynamic relationships given in equations (16-18).

The kind and the number of independent state variables chosen, and the specific forms chosen for their

associated material functions, vary from model to model. A particular model may be simple and employ only a

couple facets of the theory, or it may be complex and employ many facets of the theory. This discretion is left

to the individual modeler who best understands his own needs.

In addition to equations (30-33) which characterize the deformation properties of the material, there are

the constitutive equation for entropy, the evolution equation for heat flux, and the thermal dissipation inequality

given in equations (16-18) which characterize the thermal properties of the material.

5. DISCUSSION OF THE THEORY

An arbitrary number (i.e., u) of constituent back stresses Bi_ = 211_i_/3 can be introduced into a visco-

plastic model. It has been demonstrated by CttABOCtIE et al. [16,22,35,39], WALKER [20], MII.I.ER el al.

[27,29,38], and MCDOWELL & MOOSBRUGGER [30] that two back stresses (sometimes referred to as short-range

and long-range back stresses) are typically necessary for proper material characterization. They are thermo-

dynamically admissible within this theoretical framework provided that i) the back stress is given by the entire

U

sum of its constituents B 0 = __aBi_l, and that ii) each constituent evolves in a manner compatible with equation
_=1

10



(31).Thebackstressis thereforea sumof shapeor weightfunctions,eachbeingits own,generalized,state-
variablecoordinate.

Theimplementationof thephenomenologyof competinghardeningandrecoverymechanismsintoanevo-

lutionequationfor thebackstressis complicatedby thefactthatthebackstressis a tensorialquantity,and
thereforehasdirectionalcharacteristics.Herethebackstressisconsideredto hardenlinearlyin thesamedirec-

tion thatthe inelasticstrainevolvesin,asadvocatedbyPRAGER [51]. Static recovery is taken to occur in a

direction that opposes itself, in accordance with the Bailey-Orowan model of POSTER & LECKm [12]. And for

the dynamic recovery of back stress, we adopt the concept of BtmLET & CAILLETAUD [57], as it presents a natural

gencralization to the popular model of ARMSTRONG & FREDERICK [8]. Figure 1 presents a schematic for the

directional characteristics of this phenomenology. It is simplified here for the case of one constituent of back

stress for illustrative purposes. The Armstrong-Frederick model considers dynamic recovery to occur in a direc-

tion that opposes itself (like static recovery), resulting in a formulation that is equivalent to a two-surface theory

of plasticity with Mroz hardening, as shown in reference 18. The Burlet-Cailletaud model is equivalent to the

Armstrong-Frederick model for proportional loading histories, but it has the capability for predicting a different

response under nonproportional conditions, depending upon the value of the nonproportionality parameter p_

found in equation (32). The one extreme of p_ = 0 gives dynamic recovery as advocated by Armstrong and

Frederick. The other extreme of p_ = 1 causes dynamic recovery for the _th constituent of brick stress to occur

in a direction -ni_. This direction does not oppose the direction of back stress; rather, it opposes that of inelas-

tic strain rate (for the case of one constituent in back stress, as in the Burlet-Cailletaud model), which general-

izes Prager's, linear, kinematic, hardening rule into a nonlinear, kinematic, hardening rule. These two extremes

can predict vastly different nonproportional responses. For example, tension-torsion ratchetting behavior need

not shakedown for the case of p_ = 0, while shakedown occurs almost immediately for the case of p_ -- 1 [57].

Reality is likely to be somewhere between these two extremes, but probably closer to Armstrong-Frederick (i.e.

p_ = 0) than nonlinear Prager (i.e. p_ = 1) [32]. The coefficient n_B_/IB_I to the unit normal ni_ appearing in

equation (32) is necessary for two reasons. First, it is required to obtain an equivalent predicted response under

proportional loading conditions for all values of p_. And second, it guarentees a positive-valued contribution to

the intrinsic dissipation inequality (i.e., (ni_Bi_) 2 since n_B-_,_,j need not be - and often is not - positive valued).

The basic form of the evolutionary equation for back stress, as proposed by ARMSTRONG & FREDERICK [8],

has been used by CHABOCHE et al. [13,16,22], WALKER [20], and many others in their viscoplastic models. In the

absence of static recovery, this relationship introduces an evanescent strain memory effect (evanescent along the

inelastic strain path) caused by a strain-induced dynamic recovery phenomenon which competes against the

mechanism of linear strain hardening. This results in the back stress Bq evolving asymptotically to a limit

state L associated with kinematic saturation. Considering just one constituent for illustration, one can combine

the constitutive and evolution equations (30 and 31) for back stress into a form of the type proposed by

Armstong and Frederick; it is

= 2 .
Bi) _[e_ - d_ l_l bi)] (34)

11



underisothermalconditions.(Nonisothermalconditionswouldbringaboutaninfluencedueto thetemperature

dcpendenceof thehardeningcoefficientH cf CtlABOCI_E [13,39] and WALKER [20].) Convergence is

exponential whenever _. and ¢ are constants [8], but in our general theory

= ti 1 - p and #d= hi)B# (35)

1-p L

Hence, the model of BURLET & CAILLETAUD [57] effectively changes the concept of linear strain hardening into

one of nonlinear strain hardening for the evolution of back stress. A graphic illustration of this evanescent con-

cept is given in figure 2. Here the limiting state of back stress defines a hypersurface _ = 1 in state space

where [BI = Bsat. Whenever this bound is reached, a perfectly plastic or steady-state creep response is attained.

In the absence of static recovery, B_Q,= L where L is the rate-independent (or plastic) limiting state of back

stress; that is, L is the upper bound of Bsat. The value of this limit state is known to vary as the strength of

the material varies [18,20], i.e., L(D,Y,T). The presence of static recovery reduces the limiting state of back

stress making it rate-dependent, such that 0 < Bs_,<_L. In the absence of dynamic recovery, the evolution equa-

tion (31) is in accord with the BAILEY-OROWAN [58,59] hypothesis, that creep deformation evolves through .'1

competitive process between the mechanisms of strain hardening and time-induced static (or thermal) recovery.

At kinematic saturation, the inelastic strain rate _:,_ becomes coaxial with both the deviatoric stress Si) and the

back stress B 6 (in agreement with experiment [60,61]), and the nested set of flow surfaces

{IS-B I = constant } becomes stationary until unloading occurs. Otherwise, this set of flow surfaces can translate

freely within the limiting hypersurface, as governed by the flow and evolution equations.

Viscoplastic models use either inelastic strain (i.e. IkPl) or inelastic work (i.e. Sij_ e or (S,j-B,j)_) to

drive the evolution of the isotropic variables D and Y. Note that (So-B O)k_ is the proper expression to use

for inelastic work when a back stress is present, since in this case SO_,_ is not always positive valued. A set

of critical experiments has been performed by KREMPL [62] tO determine which of these forms for the evolution

of internal state is most representative of material response. He determined that inelastic strain provides the best

characterization of strain hardening behavior.

A hardening/recovery format for the evolution of drag strength D has been used by BODNER et al. [t),171,

MJLI.ER et al. [11,21,27,29], WALKER [20], and others in their viscoplastic models. Bodner uses inelastic work to

drive its evolution, while the others, for the most part, use inelastic strain for this purpose. Since a parameter

c c (0,1] can be arbitrarily introduced into an evolution equation for drag strength (e.g. see equation (31)), either

hardening mechanism (i.e. inelastic strain or inelastic work) can be made to satisfy the intrinsic dissipation ine-

quality of equation (11). Actually, the parameter c is transparent to the viscoplastic modeler, since he has the

flexibility to arbitrarily adjust the hardening coefficient h found in the constitutive equation (30). There is

only one driver for the evolution of drag strength that satisfies intrinsic dissipation independent of a parameter

c' it is (Sij-Bij)k_/(D-Do) as introduced by FREED & WALKER [32]. Multiple drag strengths are admissible
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within the constructs of this theory, i.e. D = Do + _.p;. They have been advocated in the models of MILLER

;=1

et al. [21,27,29,38] to complement the short- and long-range back stresses, and to account for solute strengthen-

ing effects. Except for the fact that the evolutionary equation for drag strength given in equations (30 and 31) is

a scalar equation instead of a tensorial one, it has the same mathematical features as the evolutionary equation

for back stress.

The evolution equation for yield strength Y given in equations (30 and 31) is used in the models of CHA-

BOCHE [13,16,22,39]. Our theory also permits the yield strength to be given as a sum of constituents

Y = Y0 + _Y't; however, there seems to be no physical significance in permitting w to exceed 1. The evolu-
y=l

tion of yield strength has the same mathematical features as the evolution of drag strength, except that a parame-

ter like c is not required to satisfy intrinsic dissipation.

There are two types of viscoplastic models typically found in the literature; those with a yield surface, and

those without one. Each is a special case of our theory. Each has a different energy-storage/heat-dissipation

diagram, as illustrated in figure 3. If one considers a material whose internal state is fully recovered or

annealled, and if one deforms this material in monotonic tension in the absence of thermal recovery, then for

those models with no evolving drag strength, i.e., D = Do, the intrinsic dissipation inequality (equation-(33))

becomes

I :ce + Yo+-_- +

whilc forthosemodels with no yieldsurface,i.e.,Y = Yo = 0, itbecomes

I _' > 0 (37)

(D-Do) 2"B 2

o,-c(D-D0)+ T +c l

Here only one constituentfor each internalvariableisconsideredfor simplicity.These are the equationsdep-

ictedin figures3a and 3b, respectively.There the isotmpicand kinematic variablesare shown to saturateat the

same levelof accumulated inelasticstrain,which isnot an accuraterepresentationof our observations,but itisa

convenientone for illustrativepurposes. These models predictenergy-storage/heat-dissipationratiosthatdiffer

between themselves,but probably not toa largeextent.As a consequence of effectingthe intrinsicdissipation,

thc parameter c in the drag strengthmodel influencesthe amount of inelasticwork done on a body thatis

storedinternallyversusthatwhich isdissipatedaway as heat. At saturation,both models predictthatallthe ine-

lasticwork done S_p isdissipatedaway as heat,inagreement with experiment[63].
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6. SUMMARY

Constitutive, evolution, and dissipation equations governing the response of a general class of materials are

derived from physical and thermodynamical considerations. These equations apply to materials that are initially

isotropic, and whose strain is additively decomposed into elastic (reversible) and inelastic (irreversible) com-

ponents. A general structure for a theory of viscoplasticity is then proposed. A second invariant formulation

with three fundamental internal state variables is considered. One internal variable (the tensor-valued back

stress) accounts for kinematic or flow-induced anisotropic effects. The other two variables (the scalar-valued

drag and yield strengths) account for isotropic effects. Each can be composed as a sum of independently evolv-

ing constituents. All the internal variables are assumed to evolve phenomenologicaUy through a competitive pro-

cess of strain hardening, strain-induced dynamic recovery, and time-induced static recovery. The thermodynamic

constraint of intrinsic dissipation requires attention only for the hardening term of drag strength. By introducing

an arbitrary parameter c into the evolution equation for drag strength, the constraint of intrinsic dissipation can

be satisfied.
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Figure 1. - Schematicof directions for linear hardeningLH,
dynamic recovery DR, and thermal recovery TR of back
stress.
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,- IS-BI = const.

Bij,Sij

1

Figure 2. - State space representation of the evanescent character of
back stress.

tu

HEAT DISSIPATION

ENERGY STORAGE

(a) Back stress - yield strength model (D = Do).

INELASTIC STRAIN

(b) Back stress - drag strength model (Y = O).

Figure 3. - Energy storage and heat dissipation due to
inelastic deformation,
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